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c© Società Italiana di Fisica

Springer-Verlag 2000

New look at the Lanczos method in the lattice gauge model

A. Darooneh1, M. Modarres2,3

1 Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-159, Zanjan, Iran
2 Physics Department, Tehran University, Karegar Ave., Tehran, Iran
3 Center for Theoretical Physics and Mathematics, P.O. Box 11365-8486, Tehran, Iran

Received: 17 December 1999 / Published online: 9 August 2000 – c© Springer-Verlag 2000

Abstract. In the present work we combine the Lanczos algorithm and the lowest order constrained varia-
tional method (LOCV) to obtain a simple version of the Lanczos algorithm. In order to test the method
the ground state energy and the antisymmetric mass gap of the U(1) lattice gauge model are calculated,
and the results are compared with those computed by other many body methods.

1 Introduction and review

The Lanczos technique is a powerful method for tridiago-
nalizing the large matrices, specially sparse ones, in order
to find their spectra. It may provide a sequence of approx-
imations which rapidly converges to the eigenvalues of the
matrices [1,2].

It is a very suitable method when one needs to calcu-
late the lowest eigenvalues of the Hamiltonian of a many
body system, because it uses only relatively few states
from the full Hilbert space of the system [3–5].

The Lanczos method, like the other variational meth-
ods, gives us an upper bound to the true ground state
energy:

Eg ≤ E[ψtrial] =
〈ψtrial|H|ψtrial〉
〈ψtrial|ψtrial〉 . (1)

The main idea of the Lanczos method is based on the fact
that the trail state, i.e. |ψtrail〉, can be written as

|ψtrail〉 =
m∑

n=0

αn|ψn〉 =
m∑

n=1

anH
n−1|ψ1〉, (2)

where |ψ1〉 is a seed state for generating m-dimensional
orthonormal basis states, i.e. {|ψn〉}, in an iterative pro-
cedure as follows:

|ψn〉 = H|ψn−1〉 − γ|ψn−1〉 − β|ψn−2〉. (3)

The coefficients γ and β are determined in each iteration
step by imposing the normalization and orthogonality con-
ditions on the basis states,

〈ψn|ψn〉 = 1, (4)

〈ψn|ψn−1〉 = 〈ψn|ψn−2〉 = 0. (5)

If m goes to infinity the above basis can span the whole
Hilbert space. Then the Hamiltonian is completely tridi-
agonalized and the exact eigenvalues are computed via

the standard procedure. But for a finite value of m, i.e.
the case that we face in practical problems, only an m-
dimensional subset of the Hamiltonian will be tridiago-
nalized.

However, if we expect to approximate the lowest levels
of the energy spectrum, it would be sufficient to evalu-
ate them by finding the eigenvalues of the tridiagonalized
finite-dimensional subset of the Hamiltonian.

The Lanczos method may be presented in the form of
various kinds of algorithms [3,6,7] but the above presen-
tation is well known.

Although the advantages of the Lanczos method are
clear, it faces a few serious problems.

(i) The appearance of spurious eigenvalues in practice
when the number of iterations becomes large.
(ii) In many body problems or field theories, after the ap-
plication of the Hamiltonian in each subsequent step in an
iteration a large number of independent structures appear
which should be treated as different states. Therefore, the
number of the states in the basis grows rapidly as the
iteration procedure proceeds.

There are two ways to solve the first problem [8,9].
Both are based on an algorithm for finding and omitting
spurious eigenvalues, but we should expect making costs
in terms of computation time.

The second problem can be solved by a reduction of
the states which are arising in the iteration procedure. One
way is reduction of the Hilbert space similar to the idea
that lies behind the density matrix renormalization group
technique [10]. Here we present a simple and systematic
reduction of the basis states by combining the lowest order
constrained variational (LOCV) method [11–13] and the
Lanczos algorithm.

The LOCV method has been developed and extended
during the past two decades by one of us (MM) to study
the properties of various quantum fluids, such as nuclear
and neutron matter. This technique is based on the mini-
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mization of the energy, which usually comes from the low-
est order cluster expansion, with respect to a suitable trial
state and a constraint in order to take into account the
effects of the higher order terms in the cluster expansion
of the energy.

We present in Sect. 2 the formalism of LOCV and the
way we will merge it to the Lanczos algorithm. Section 3
is devoted to the application of a combined method to
the well-known problem, the U(1) gauge model. Thus the
ground state energy and the antisymmetric mass gap are
computed. We summarize our work in Sect. 4, focussing
on a comparison of our results and those which have been
obtained by other many body methods.

2 Formalism

In the cluster expansion method the trial state is obtained
by application of the correlation operator F on a seed
state, i.e. |ψ1〉:

|ψtrail〉 = F (1, 2, · · · , N)|ψ1〉. (6)

The seed state describes the system in the absence of any
interaction, namely it may be the product of the one par-
ticle states. The operator F is symmetric and shows all
of the correlations between the system constituents. The
correlation operator has the cluster property; it will be-
come a product of two factors if the system decomposes
in two pieces (clusters) with n and N − n particles, re-
spectively, such that there would not be any interaction
between them,

F (1, 2, · · · , N) → Fn(1, · · · , n)FN−n(n+ 1, · · · , N). (7)

The first three terms in the cluster expansion of energy is
usually written in the following form [14]:

E1 = 〈ψ1|T (1)|ψ1〉, (8)

E2 =
1
2
〈ψ1|12F

†
2 (1, 2)[T (1) + T (2), F2(1, 2)] + adj.

+ F †
2 (1, 2)V (1, 2)F2(1, 2)|ψ1〉 (9)

and

E3 =
1
3!

〈ψ1|12F
†
3 (1, 2, 3)[T (1) + T (2) + T (3),

F3(1, 2, 3)] + adj.+ F †
3 (1, 2, 3) {V (1, 2) + V (2, 3)

+ V (1, 3)}F3(1, 2, 3)|ψ1〉
− E2〈ψ1|F †

2 (1, 2)F2(1, 2)|ψ1〉, (10)

where T (1) and V (1, 2) are the one and two particle parts
of the Hamiltonian, respectively, i.e.

H =
∑

n

T (n) +
∑
m<n

V (m,n). (11)

In the LOCV method we impose a constraint on the cor-
relation operators and minimize (9) with respect to them
by introducing a Lagrange multiplier,

δE2[F2(1, 2)]
δF2(1, 2)

− µ
δC [F2(1, 2)]
δF2(1, 2)

= 0. (12)

The choice of the constraint C[F2(1, 2)] is very important.
Beside that it should have physical meaning, it would have
to make the convergence of the cluster series as fast as
possible. It is well known that the normalization constraint
[15] satisfies both above conditions, i.e.,

C[F2(1, 2)] = 〈ψ1|F †
2 (1, 2)F2(1, 2) − 1|ψ1〉 = 0. (13)

Equation (10) is used to check the plausibility of the
LOCV results.

We use the idea of the Lanczos method to define the
correlation operator F as follows:

F =
m∑

n=1

anH
n−1. (14)

The above adoption of the correlation operator can be
applied to the LOCV method in (12),

E =

∑m
q=1

∑m
p=1 aqap〈ψ1|Hq+p(1, 2)|ψ1〉∑m

q=1
∑m

p=1 aqap〈ψ1|Hq+p−1(1, 2)|ψ1〉 . (15)

The coefficients {an} are determined by the same proce-
dure, namely the Lanczos algorithm which was described
previously.

In the following section we apply the above reduced
version of the Lanczos method to the well-known problem
of the U(1) lattice gauge model.

3 The U(1) model

We can extract all physical properties of the U(1) lat-
tice gauge model in two dimensions from the Hamiltonian
which is usually written as

H =
∑
X

{
−2

∂2

∂B2
X

+ λ(1 − cosBX)
}

+
1
2

∑
X,ρ

∂2

∂BX∂BX+ρ
, (16)

where X labels the plaquettes of the lattice, ρ represents
the unit vectors in the principal directions and BX is an
angle variable (−π ≤ BX ≤ π) which is called the mag-
netic field of the plaquette X.

The different phases of the system are characterized by
a positive and dimensionless coupling constant λ. We ac-
quire the strong (weak) coupling phase when the coupling
constant approaches zero (infinity).

The Hamiltonian is invariant under the reflection
transformation X → −X; therefore, it should have sym-
metric and antisymmetric branches of the eigenvalues.
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Fig. 1. The ground state energy per plaquette of the U(1)
lattice gauge as a function of the coupling constant. The solid
line represents the perturbation expansion form for the weak
coupling limit, and the points display our result
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Fig. 2. The logarithm of antisymmetric mass gap as a function
of the squared root of coupling constant. The solid line is the
result of fitting for 1.2 < λ1/2 < 1.78 to find the unknown
parameters in the weak coupling limiting form (19)

Here we are interested in the calculation of the ground
state energy density ω0 and the density of the first anti-
symmetric energy excitation ωA. The corresponding mea-
surable quantity, the antisymmetric mass gap is the dif-
ference between these values,

mA = ωA − ω0. (17)

To compute the above quantities, in the first step we
should evaluate the moments of the Hamiltonian
{〈Hn(1, 2)〉}. We choose |0〉 and (sinB1 + sinB2)|0〉 as
our symmetric and antisymmetric seed state. The state
|0〉 expresses that the magnetic field of all plaquettes is
equal to zero.

Table 1. Results for the coefficients α0 and α1 in the weak
coupling limit for the photon mass gap

Sources α0 α1

Villain [21] 2.49 2.18
BRG [24] 2.05 2.49
MC [23] 2.65 3.07
CBF [18] 2.40 3.13
CCM [17] 2.50 2.94
BTE [19] 2.61 2.97
LOCV [22] 2.40 2.89
Present work 2.20±0.03 2.65±0.05

The result of our calculation for the ground state en-
ergy density is shown in Fig. 1. This is in fair agreement
with the results that were obtained by other many body
techniques [16–19,22]. The perturbation expansion form
for the weak coupling limit [20] can also be given:

ω0 = 0.958
√
λ− 0.114 + · · · (λ → ∞). (18)

The behavior of the logarithm of the photon mass as a
function of the squared root of the coupling constant is
displayed in Fig. 2. The photon mass gap has the following
asymptotic form in the weak coupling limit [21]:

mA = λ3/4e−α0
√

λ+α1 . (19)

Many authors reported numerical values for α0 and α1 in
the above equation. Our results for these coefficients which
are obtained by fitting to the weak coupling asymptotic
form in (19) for 1.2 < λ1/2 < 1.78 are given in Table 1.
The other [17–19,22–24] calculations are also presented
for comparison.

We can check the consistency of our combined method
by considering the remaining terms in the energy cluster
expansion. To find the third order correction to the en-
ergy we should mention here that in the above calculation
we have restricted ourselves to the two plaquette approx-
imation. Then the three plaquette correlation operator is
written as a sum of two plaquette correlation operators,

F3(1, 2, 3) = F2(1, 2) + F2(2, 3) + F2(1, 3), (20)

and it is clear from (10) that the third order energy cor-
rection is equal to zero.

The plausibility of a two plaquette approximation is
checked by comparison of our results with those which
are carried out by other many body methods as we did
before.

4 Summary

The Lanczos method is a powerful tool for solving many
body problems but in practical applications of this method
we encounter a large number of basis states which are
obtained in each step of iteration.
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For example in the case of the U(1) lattice gauge model
we have in the fourth, fifth and sixth steps of the iteration
67, 357 and 2457 basis states, respectively [17]. As regards
the consumption of the calculation time and the number
of bytes in memory we should choose the more important
states among the set of all basis states.

The lowest order constrained variational method offers
a simple and a systematic way to sieve the basis states.
To have a comparison we must note that in the case of a
U(1) model the number of states is reduced to 71 in the
sixth iterations step.

The results which are obtained for the ground state
energy and the antisymmetric mass gap are comparable
with other results.
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21. M. Göpfert, G. Mack, Cumm. Math. Phys. 82, 545 (1982)
22. A. Darooneh, M. Modarres, to appear in J. Phys. G Vol.

26
23. A.C. Irving, J.F. Owens, C.J. Hamer, Phys. Rev. D 28,

2059 (1983)
24. G. Lana, Phys. Rev. D 38, 1954 (1988)


